Mouse and human islets survive and function after coating by biosilicification.

نویسندگان

  • David B Jaroch
  • Jing Lu
  • Rajtarun Madangopal
  • Natalie D Stull
  • Matthew Stensberg
  • Jin Shi
  • Jennifer L Kahn
  • Ruth Herrera-Perez
  • Michael Zeitchek
  • Jennifer Sturgis
  • J Paul Robinson
  • Mervin C Yoder
  • D Marshall Porterfield
  • Raghavendra G Mirmira
  • Jenna L Rickus
چکیده

Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9-15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

Surface coating of pancreatic islets with neural crest stem cells improves engraftment and function after intraportal transplantation.

The present study aimed to develop techniques for surface coating of islets with neural crest stem cells (NCSCs) in order to enable cotransplantation to the clinically used liver site and then investigate engraftment and function intraportally of such bioengineered islets. Mouse islets were coated during incubation with enhanced green fluorescent protein (EGFP)-expressing mouse NCSCs and transp...

متن کامل

Normal Insulin Secretion from Immune-Protected Islets of Langerhans by PEGylation and Encapsulation in the Alginate-Chitosan-PEG

Background: Pancreatic islet transplantation is one of the most promising strategies for treating patients with type I diabetes mellitus.Objective: We aimed to assess the immunoisolation properties of the multilayer encapsulated islets using alginate-chitosan-PEG for immunoprotection and insulin secretion from the encapsulated islets induced under differe...

متن کامل

Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets.

Pancreatic islet transplantation is an emerging therapy for type 1 diabetes. To survive and function, transplanted islets must revascularize because islet isolation severs arterial and venous connections; the current paradigm is that islet revascularization originates from the transplant recipient. Because isolated islets retain intraislet endothelial cells, we determined whether these endothel...

متن کامل

O-11: Prenatal Oogenesis: Selecting the Qualityand Quantity of Oocytes in the OvarianReserve

Background: The purpose of this research programme is to improve understanding of the molecular and cellular processes that lead to selection of oocytes before birth. Vastly more oocytes are produced prenatally than can be utilised in reproductive life. Around 70%, of oocytes formed are eliminated before birth and never contribute to the ovarian reserve. After birth, the number of oocytes conti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 305 10  شماره 

صفحات  -

تاریخ انتشار 2013